Angebot!

Seminar Multivariate Datenanalyse mit SPSS

Dozent: Dr. Haug Leuschner

 

 895,00 2.390,00

Zzgl. MwSt.
Auswahl zurücksetzen

Das Seminar Multivariate Datenanalyse mit SPSS behandelt im dreitägigen Basistraining die multiple und die logistische Regressionsanalyse und im direkt anschließenden zweitägigen Aufbautraining strukturentdeckende Verfahren zur Analyse des Zusammenhangs zwischen mehreren Variablen.

Bei Buchung des Aufbautrainings werden die Inhalte des Basistrainings vorausgesetzt. Im fünftägigen Kompletttraining haben Sie das gesamte Programm, wobei im Preis eine Ermäßigung von 100 Euro für die Teilnahme am Basis- und Aufbautraining in derselben Woche enthalten ist.

Unternehmen und Organisationen können bei der Buchung von zwei Seminarplätzen im 5-tägigen Komplett-Training kostenlos eine dritte Person anmelden (bei der Buchung von zwei Plätzen können drei Namen an der Kasse angegeben werden).

Wir empfehlen, mit SPSS ab Version 27 teilzunehmen. Falls auf dem teilnehmenden Computer kein SPSS Version 27 oder höher verfügbar sein sollte, wäre es vorteilhaft, einen Fernzugriff auf den Schulungslaptop E15 zu buchen.

Im Preis sind digitale Unterlagen und ein Schulungszertifikat enthalten, optional können gedruckte Unterlagen und der Fernzugriff (Virtual Network Computing) auf einen unserer Schulungslaptop E15 dazugebucht werden, auf denen die neueste SPSS-Version installiert ist. Sie können auf Rechnung zahlen (weitere Infos).

Artikelnummer: MDS Kategorien: ,

Beschreibung

In der fünftägigen Komplett-Schulung Multivariate Datenanalyse mit SPSS werden in den ersten drei Tagen die strukturprüfenden Verfahren behandelt. Dazu gehören die Regressionsanalyse, die Zeitregression, die Diskriminanzanalyse und die logistische Regression. In den letzten beiden Tagen werden die strukturentdeckenden Verfahren behandelt. Dazu gehören die explorative Faktorenanalyse, die Reliabilitätsanalyse und die Clusteranalyse.

Zielgruppe: Anwender, Fachkräfte und Studierende aus den Bereichen der Sozial- und Marktforschung, der Betriebswirtschaft (Marketing, Controlling, Qualitätskontrolle) und der psychologischen, klinischen und pharmazeutischen Forschung

Voraussetzungen: Erfahrungen mit SPSS und die Inhalte des Seminars Grundlagen der Statistik mit SPSS (oder eines vergleichbaren Seminars: Interpretation von Korrelationskoeffizienten wie Pearsons r und Signifikanztests wie dem t-Test sollten bekannt sein). Grundlegende Fertigkeiten im Umgang mit SPSS, wie Datenimport, Datenaufbereitung, Grafikerstellung und statistische Standardverfahren, werden vorausgesetzt, ständig angewendet und vertieft. Wenn der Umgang mit SPSS nicht vertraut sein sollte, empfiehlt es sich, vorher ein SPSS-Training mit den Grundlagen oder ein vergleichbares Seminar zu besuchen.

Lernziele: fortgeschrittene Funktionen von IBM SPSS Statistics kennenlernen, Daten mit Hilfe von multivariaten Verfahren auswerten können, Ergebnisse von multivariaten Datenanalysen grafisch darstellen, erläutern und interpretieren können, aufgrund einer Fragestellung das geeignete multivariate Verfahren identifizieren und anwenden können

Übungen: Es wird Wert auf den Anwendungsbezug gelegt, die Praxisbeispiele und Übungsaufgaben erfolgen in der Schulung auf unseren Schulungslaptops mit dem Statistikprogramm IBM SPSS Statistics.

Leistungen: ganztägiger Intensiv-Unterricht in Kleingruppen (9-17 Uhr, max. 10 Personen), gedrucktes Schulungszertifikat; Online-Veranstaltungen: digitale Schulungsunterlagen (gegen Aufpreis: gedruckte Schulungsunterlagen und/oder Fernzugang zu einem Schulungslaptop mit installierter Software); Präsenz-Veranstaltungen: Schulungsräume in zentraler Lage, Getränke in den Pausen, Schulungslaptop mit installierter Software, gedruckte Schulungsunterlagen

Aufbau: Die 5-tägige Komplett-Schulung Multivariate Datenanalyse mit SPSS besteht aus einer 3-tägigen Basis-Schulung und einer anschließenden 2-tägigen Aufbau-Schulung, die auch einzeln gebucht werden können.

Inhalte des 5tägigen Komplett-Trainings Multivariate Datenanalyse mit SPSS:

  • 3-tägiges Basis-Training: strukturprüfende Verfahren

    • Multiple Regressionsanalyse: Regressionsmodelle für kontinuierliche und kategoriale Variablen mit Suppressionseffekten (Suppressoranalyse), Moderationseffekten (Moderatoranalyse), nicht-linearen Effekten (polynomiale Regression) und Interaktionseffekten zwischen kategorialen und kontinuierlichen Variablen (dummykodierte Regressionsanalyse); automatisierte Verfahren zur Auswahl von Prognosevariablen und der Ermittlung des am besten an die Daten angepassten Modells; Residualdiagnostik und Prüfung der Modellprämissen (Angemessenheit des Modells, Unabhängigkeit der Daten, Multikollinearität, Homoskedastizität und Normalverteilung der Residuen, Erkennung von einflussreichen Datenpunkten); 2D- und 3D-Grafiken von Regressionsmodellen
    • Logistische Regression: Schätzung der logistischen Regressionsfunktion, Interpretation der Koeffizienten (Logits, Odds und Wahrscheinlichkeiten), Berechnung von Odds Ratio und relatives Risiko, Konfusionstabellen mit Trefferquote, Spezifität und Sensitivität, ROC-Kurven und automatisierte Verfahren zur Ermittlung des optimalen Trennwerts, automatisierte Auswahl von Prognosevariablen, Prüfung des Gesamtmodells und der Merkmalsvariablen (AUC, Likelihood-Ratio-Test und Pseudo R-Quadrat-Statistiken)
  • 2-tägiges Aufbau-Training: strukturentdeckende Verfahren

    • Zeitreihenregression: Zeitreihenmodelle mit Trend- und Saisonkomponenten, lineare/nichtlineare Trendmodelle mit Berücksichtigung von zyklischen Schwankungen und Strukturbrüchen, Extrapolationsmodelle und Strukturmodelle, Erstellung von Prognosen, Beurteilung der Modellgüte und Prognosegüte
    • Clusteranalyse Hierarchische Clusteranalyse (Distanz- und Ähnlichkeitsmaße, Fusionierungs-Algorithmen: Single-Linkage, Complete-Linkage, Ward, Bestimmung der optimalen Clusterzahl), k-Means-Clusteranalyse, Two-Step-Clusteranalyse
    • Diskriminanzanalyse: Schätzung der Diskriminanzfunktion, Prüfung der Modellgüte und der Eignung von Merkmalsvariablen, automatisierte Auswahl von Merkmalsvariablen, Klassifikation von neuen Fällen
    • Explorative Faktorenanalyse: Variablenauswahl, Bestimmung der Anzahl der Faktoren, Hauptachsen- und Hauptkomponentenanalyse, Extraktion und Rotation der Faktoren, Faktorinterpretation, Faktorwerte
    • Reliabilitätsanalyse: Prüfung eines Indikatorsets eines Faktors auf Eindimensionalität; Indikatorreliabilität: Faktorladungen, Kommunalitäten, Cronbachs Alpha (ohne Item), Item-To-Skala-Korrelation; Faktorreliabilität: Cronbachs Alpha, Inter-Item-Korrelationen, Einheitsstruktur