Seminar Machine Learning mit Python

Dozent: Dr. Christoph Oestreicher

 

Bisher bei uns  1.150,00 1.275,00

Zzgl. 19% MwSt.

Das zweitägige Seminar Machine Learning mit Python ist das zweite Modul des Lehrgangs Data Science Crash Course mit Python und gibt einen Einblick in die unterschiedlichen Algorithmen des Maschinellen Lernens.

Eine kurze Beschreibung des Kurses finden Sie unten. Ausführliche Informationen finden Sie auf der → Veranstaltungsseite zum Seminar.

Artikelnummer: MLP Kategorien: , ,

Beschreibung

Der Kurs Machine Learning mit Python ist das zweite Modul des Lehrgangs Data Science Crash Course mit Python. Das Modul Machine Learning mit Python gibt einen Einblick in die unterschiedlichen Algorithmen des Maschinellen Lernens. Die Theorie dahinter wird dabei anhand von Praxis-Übungen aus den Bereichen Clustering, Virtuelle Sensoren und Zeitreihenvorhersage vermittelt. In diesem Modul werden Sie sich hauptsächlich mit der Anwendung des Machine Learning auf numerischen Daten beschäftigen. Gerne können Sie hierfür auch Ihre eigene Fragestellung inkl. der notwendigen Daten mitbringen.

Zielgruppe: Beschäftigte aus operativen Bereichen, R&D und IT mit grundlegenden Programmierkenntnissen geeignet, welche die Potenziale von Data Science, Künstlicher Intelligenz und Maschinellem Lernen für ihren Bereich kennenlernen und hautnah erfahren möchten. Außerdem Anwender, Studenten, Doktoranden und Forscher aus den mathematischen, statistischen, naturwissenschaftlichen, ingenieurwissenschaftlichen, informationstechnologischen, betriebs-, wirtschafts-, markt- und sozialwissenschaftlichen Bereichen.

Voraussetzungen: die Inhalte des Seminars Data Science und Künstliche Intelligenz mit Python (grundsätzliches Verständnis der Modellierung und dem zugehörigen Prozess im Data Science sowie entsprechende Programmierkenntnisse in der Skriptsprache Python)

Lernziele: Am Ende dieses Intensivkurses Machine Learning mit Python werden Sie

  • eine Kategorien-Einteilung/Clustering mit Unüberwachtem Lernen/Unsupervised Learning (PCA, k-Means, DBSCAN) durchführen können,
  • eine Trendvorhersage mit Überwachtem Lernen/Supervised Learning (Neuronale Netze, XGBoost, LSTM) durchführen können,
  • einen Virtuellen Sensor mit Überwachtem Lernen/Supervised Learning (Decision Tree, Random Forest, XGBoost) entwickeln können,

Dauer: Die Seminardauer beträgt zwei Tage. Format:

  • Rahmen: 2 Tage mit 16 Unterrichtsstunden (täglich 8 Stunden, 9-17 Uhr)
  • Aufteilung Theorie/Praxis: 40% Vorlesung + 60 % Praxis, Übungen und Demos

Leistungen: Unterricht im virtuellen Klassenraum, max. 10 Teilnehmer pro Veranstaltung, persönliche Betreuung durch den Dozenten, täglicher Unterricht 9-17 Uhr, digitale Schulungsunterlagen, Zertifikat wird danach zugeschickt, Zahlung auf Rechnung

Ausführliche Informationen und Buchungsmöglichkeiten finden Sie auf der → Veranstaltungsseite zum Seminar.

Inhalte des 2-tägigen Trainings Machine Learning mit Python

  • Praxis-Beispiel I (Clustering)
    • Einführung in den Kontext und die Daten
    • Zielsetzung und Methodennutzung
    • Praxis-Übung I: Dimensionalitätsreduzierung mit einer Principal Components Analysis (PCA)
    • Praxis-Übung II: Kategorie-Einteilung von Service-Einsätzen mittels k-Means und Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
  • Praxis-Beispiel II (Virtueller Sensor)
    • Einführung in den Kontext und die Daten
    • Zielsetzung und Methodennutzung
    • Praxis-Übung: Vorhersage eines (meistens nicht direkt messbaren) Wertes anhand vorhandener Variablen/Merkmale mittels Decision Trees, Random Forest und XGBoost, Evaluation mittels Feature Importance
  • Praxis-Beispiel III (Trendvorhersage)
    • Einführung in den Kontext und die Daten
    • Zielsetzung und Methodennutzung
    • Praxis-Übung I: Zeitreihenvorhersage mittels Random Forest, XGBoost und Neuronalen Netzen
    • Praxis-Übung II: Multivariate Zeitreihenvorhersage mittels Long-Short-Term-Memory (LSTM) mit weiterführenden Python-Bibliotheken: keras, tensorflow

Ausführliche Informationen und Buchungsmöglichkeiten finden Sie auf der → Veranstaltungsseite zum Seminar.