Deep Learning mit R

Posted on
Print Friendly, PDF & Email
Wenn es um die erfolgreiche Nutzung von Daten geht, dominiert seit einigen Jahren die „Künstliche Intelligenz“ die Berichterstattung. Dabei hat sie diesen Höhenflug dem Maschinellen Lernen zu verdanken. In dieser Disziplin werden Erkenntnisse und Regeln direkt aus den Daten gewonnen. Eines der bekanntesten Methoden in diesem Bereich sind Neuronale Netzwerke, welche die Daten schichtweise verarbeiten. Noch vor 10 Jahren hat man sich mit wenigen Schichten zufrieden gegeben. Durch den immensen Erfolg im Bereich der Objektklassifizierung und -erkennung (z. B. bei der Gesichtserkennung oder beim Autonomen Fahren), sowie bei der Verarbeitung natürlicher Sprache (z. B. bei Übersetzungen) haben tiefe neuronale Netzwerke (Netzwerke mit sehr vielen Schichten, Deep Learning) immer mehr an Bedeutung gewonnen. In dem Kurs Deep Learning mit R geben wir einen intensiven Einblick in tiefe Neuronale Netze, angefangen beim ursprünglichen Perzeptron über klassische Neuronale Netze bis hin zu Deep Learning.

Dabei gibt der Intensivkurs Deep Learning mit R einen Überblick über die aktuellen Methoden des Maschinellen Lernens mit speziellen Fokus auf tiefe neuronale Netze. Anhand von zwei Praxis-Beispielen erhalten Sie einen intensiven Einblick, wie diese Methoden in der Praxis angewendet werden. Gerne können Sie hierfür auch eine eigene Fragestellung inkl. der notwendigen Daten mitbringen.

In den zwei Tagen erfahren Sie die wichtigsten Details zu tiefen Neuronalen Netzen und lernen R Caret, Keras/TensorFlow sowie rTorch kennen. Mit diesem Handwerkszeug können Sie sofort loslegen, die Potenziale des Deep Learnings auf Fragestellungen Ihres Unternehmens in Verbindung zu bringen.

Gerne passen wir die Inhalte dieses Firmenseminars an Ihre Wünsche an.

Interessenten mit soliden R-Kenntnissen können an dem offenen Kurs → Deep Learning mit Python teilnehmen. Für fortgeschrittene Programmierer ist es unerheblich, ob der Zugriff auf die Deep-Learning-Bibliotheken mit Python oder mit R erfolgt. Daher können Sie an dem Alternativkurs Deep Learning mit Python auch mit R und RStudio teilnehmen. Der Dozent kennt sich in beiden Welten bestens aus.

 

Alle Bewertungen stammen ausschließlich von Kunden und Seminarteilnehmern von Dr. Christoph Oestreicher.
Die Bewertungen werden von einem unabhängigen Dienstleister gesammelt, geprüft und ausgewertet.

Zielgruppe des Seminars Deep Learning mit R

Unser Intensivkurs Deep Learning mit R ist für Beschäftigte aus operativen Bereichen, R&D und IT mit grundlegenden Programmierkenntnissen geeignet, welche die Potenziale von Deep Learning für ihren Bereich kennenlernen und hautnah erfahren möchten. Anwender, Studenten, Doktoranden und Forscher aus den mathematischen, statistischen, naturwissenschaftlichen, ingenieurwissenschaftlichen, informationstechnologischen, betriebs-, wirtschafts-, markt- und sozialwissenschaftlichen Bereichen sind ebenfalls willkommen.

Voraussetzungen für das Seminar

Für den Kurs Deep Learning mit R sind Grundverständnisse der Linearen Algebra (Vektoren, Matrizen) und ein Basiswissen in der Statistik (wie Korrelationen, Signifikanztests, lineare Regression) sehr empfehlenswert. Sie sollten Grundkenntnisse in einer Programmiersprache besitzen, am besten wäre eine Skriptsprache wie R, Python oder Matlab. Liegen keine Programmierkenntnisse vor, können Sie den dafür entwickelten Vorbereitungskurs Einführung in die Programmierung mit R besuchen.

Lernziele des Seminars

Am Ende dieses Intensivkurses Deep Learning mit R werden Sie

  • die aktuelle Berichterstattung zu Künstliche Intelligenz, Maschinellem Lernen, Neuronalen Netzen und speziell Deep Learning inhaltlich einordnen und bewerten können,
  • Projekte mit R (mit Caret, Keras/Tensorflow und rTorch) und Methoden des Deep Learnings starten zu können,
  • wissen, welche und wie viele Daten für die erfolgreiche Umsetzung einer Fragestellung mit Deep Learning (noch) notwendig sind,
  • eine Bild-Klassifizierung mit Convolutional Neural Networks (CNNs) durchführen und Texte mit Transformer generieren können.

Dauer des Seminars

  • Rahmen: je nach Wunsch 2-3 Tage (täglich 8 Stunden, 9-17 Uhr)
  • Aufteilung Theorie/Praxis: 40% Vorlesung + 60 % Praxis, Übungen und Demos

 

Offene Schulungen in Deep Learning mit R

Training Deep Learning mit R
Inhalte
  • Überblick, Grundlagen und Praxisbeispiele
    • Künstliche Intelligenz
    • Maschinelles Lernen
    • Deep Learning
    • Praxisbeispiele u.a. zu den Themen:
      • Natural Language Processing (Chatbots, Übersetzungen etc.)
      • Bildverarbeitung (Objekterkennung, Tracking etc.)
      • Intelligente Agenten (Bots, Optimierungen etc.)
    • Impulse, wie Deep Learning auch in Bereichen wie Logistik, Wartung & Instandhaltung (Predictive Maintenance), Prozessindustrie oder Customer Journey angewendet werden kann
  • Kurze Einführung in R
    • Relevante R-Bibliotheken: tidyverse, caret, reticulate
    • Weiterführende R-Bibliotheken: keras, tensorflow, rtorch
    • Praxis-Übung: Regression (Supervised Learning)
  • Neuronale Netzwerke
    • Loss-Functions, Gradienten und Gradienten-Abstieg
    • Klassische Architekturen: (Multi-Layer)-Perceptrons
    • Weiterführende Architekturen: Convolutional Neural Networks, Recurrent Neural Networks und Transformers (inkl. Attention und Self-Attention)
    • Ausblick: Deep Reinforcement Learning
    • Praxis-Übung: Klassifikation (Supervised Learning)
  • Praxis-Beispiel I (Bildverarbeitung)
    • Einführung in den Kontext und die Daten
    • Zielsetzung und Methodennutzung
    • Praxis-Übung: Bild-Klassifizierung anhand Convolutional Neural Networks (CNNs)
  • Praxis-Beispiel II (Natürliche Sprachverarbeitung/NLP)
    • Einführung in den Kontext und die Daten
    • Zielsetzung und Methodennutzung
    • Praxis-Übung: Text-Generierung anhand LSTMs und Transformers (inkl. Embeddings)
Voraussetzungen
  • Grundverständnisse der Linearen Algebra (Vektoren, Matrizen, Ableitungen)
  • Basiswissen Statistik (wie Mittelwert, Korrelationen, lineare Regression)
  • Programmierkenntnisse (Skriptsprache wie R, Python oder Matlab)
Seminartyp und Dauer
  • Firmen-Seminar mit einer Dauer von 2-3 Tagen
  • Unterricht 9-17 Uhr mit angemessenen Pausen
  • 40% Vorlesung + 60 % Praxis, Übungen und Demos